Extensions 1→N→G→Q→1 with N=Dic3 and Q=S32

Direct product G=NxQ with N=Dic3 and Q=S32
dρLabelID
S32xDic3488-S3^2xDic3432,594

Semidirect products G=N:Q with N=Dic3 and Q=S32
extensionφ:Q→Out NdρLabelID
Dic3:1S32 = S3xC3:D12φ: S32/C3xS3C2 ⊆ Out Dic3248+Dic3:1S3^2432,598
Dic3:2S32 = C3:S3:4D12φ: S32/C3xS3C2 ⊆ Out Dic3248+Dic3:2S3^2432,602
Dic3:3S32 = D6:S32φ: S32/C3:S3C2 ⊆ Out Dic3488-Dic3:3S3^2432,600
Dic3:4S32 = (S3xC6):D6φ: S32/C3:S3C2 ⊆ Out Dic3248+Dic3:4S3^2432,601
Dic3:5S32 = S3xC6.D6φ: trivial image248+Dic3:5S3^2432,595
Dic3:6S32 = Dic3:6S32φ: trivial image488-Dic3:6S3^2432,596

Non-split extensions G=N.Q with N=Dic3 and Q=S32
extensionφ:Q→Out NdρLabelID
Dic3.1S32 = S3xC32:2Q8φ: S32/C3xS3C2 ⊆ Out Dic3488-Dic3.1S3^2432,603
Dic3.2S32 = D6.4S32φ: S32/C3xS3C2 ⊆ Out Dic3488-Dic3.2S3^2432,608
Dic3.3S32 = D6.3S32φ: S32/C3xS3C2 ⊆ Out Dic3248+Dic3.3S3^2432,609
Dic3.4S32 = Dic3.S32φ: S32/C3xS3C2 ⊆ Out Dic3248+Dic3.4S3^2432,612
Dic3.5S32 = C33:5(C2xQ8)φ: S32/C3:S3C2 ⊆ Out Dic3488-Dic3.5S3^2432,604
Dic3.6S32 = C33:6(C2xQ8)φ: S32/C3:S3C2 ⊆ Out Dic3248+Dic3.6S3^2432,605
Dic3.7S32 = D6.6S32φ: S32/C3:S3C2 ⊆ Out Dic3488-Dic3.7S3^2432,611
Dic3.8S32 = (S3xC6).D6φ: trivial image248+Dic3.8S3^2432,606
Dic3.9S32 = D6.S32φ: trivial image488-Dic3.9S3^2432,607

׿
x
:
Z
F
o
wr
Q
<